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Abstract

An elasto-plastic frictional tangential force–displacement (TFD) model for spheres in contact for accurate and ef-

ficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal

force–displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of

the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is

accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and

unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic

contact area radius into an elastic part and a plastic part, (ii) the correction of the particles� radii at the contact point,
and (iii) the correction of the particles� elastic moduli. The correction of the contact-area radius represents an effect of

plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation

after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The con-

struction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD

model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a co-

herent set of force–displacement (FD) models not available hitherto for granular-flow simulations, and are consistent

with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for

efficient simulations of granular flows (or granular gases) involving a large number of particles.
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1. Introduction and literature review

Many natural and industrial processes involve particle systems. Debris flows or lahars in volcanic re-
gions [3], the mixing of dry granular powders in the manufacturing of pharmaceuticals [4] are some ex-

amples. The motion of such particle systems must be well understood to avoid potential losses of human

lives and material damage in natural disasters, or to increase the efficiency of industrial processes in particle

handling and transportation.

Simulation by the discrete element method (DEM) is an approach that can be used to increase the

understanding of particle systems [5]. In DEM, models for direct particle–particle contacts, which domi-

nates the behavior of the flow, play a crucial role. It has been amply demonstrated in [6] that an accurate

tangential force–displacement (TFD) model would produce sharply different statistics of force amplitude
and frequency of collision in dry granular flows; these quantities are critical, for example in the prediction

the rate of attrition of the colliding particles due to particle breakage or particle fragmentation [7,8]. It is

therefore important to use a model that can accurately describe the contact force–displacement (FD) re-

lationship to obtain reliable simulation results. Since DEM is computationally intensive––especially when

the number of particles is large––the FD models employed must also be efficient. A clear and detailed

overview of the numerical approach employed in DEM and the role of the contact FD models in granular-

flow simulations is given in [9].

In many particle systems, the inelastic behavior of the materials involved must be accounted for to
provide a more accurate modeling of the overall system. In granular gas systems, it is important to model

the inelastic nature of interparticle collisions [10], which provide a dissipation mechanism that steadily

removes the kinetic energy from the system and leads to several non-equilibrium processes [11]. Although

inelastic collisions of granular particles was modeled using viscoelasticity in [10] with an intention to apply

to collision of ice balls [12], the elasto-plastic response of materials in collision or in dry friction must be

accounted for in many other systems: Dissipative heavy-ion collisions [13], dry friction of solids [14,15],

granular flows [16–18], etc.

Most existing FD models for DEM simulations are based on theories of contact mechanics. For ex-
ample, the Hertz theory [19] provides solutions for elastic contact between spheres subjected to a normal

load; and the Mindlin–Deresiewicz (MD) theory [20] provides solutions for elastic-frictional contact be-

tween spheres subjected to a frictional contact force in the tangential direction. Experimental and finite

element (FE) verification of the stress distributions predicted by Hertz theory are provided in [21]. More

recently, extensive FE validation of the Hertz and MD [20] theories is presented in [22]. The significant

effect of plastic deformation on the FD relationships, as shown in [22], demonstrates the severity of a

common deficiency among the models that are based on elastic contact mechanics theories: These models

only account for elastic deformation in the FD relationship. Applying these models to the simulations of
dry granular flows, in which most contacts involve plastic deformation, can lead to inaccurate results,

particularly in the magnitude of the interparticle forces and the frequency of contact, as these quantities

affect the rate of attrition of the colliding particles, as already mentioned above (see also [6]). For more

effects of plastic deformation during contact, see also [23,24], both of which presented finite-element

analysis (FEA) results for the normal indentation of elasto-plastic half-spaces by rigid spheres.

The FD relationship for a contact problem can be divided into three components in different directions

related to the contact surface: normal, tangential, and spin. In the present paper, we focus on the TFD

relation, which plays a similar important role as the normal force–displacement (NFD) relation on the
amplitude of the interparticle forces and the frequency of collision in granular flows. Apart from the MD

[20] theory for the elastic-frictional contact of two spheres in the tangential direction, a TFD model based

on the formalism of elasto-plasticity was developed in [25]. Although developed based on an elasto-plas-

ticity formalism, the model in [25] was applicable to elastic materials only. Other existing TFD models, such

as those proposed in [26,27], and in [6], can be viewed as various approximations and simplifications to the



300 L. Vu-Quoc et al. / Journal of Computational Physics 196 (2004) 298–326
MD [20] theory. These TFD models do not account for the effect of plastic deformation. Moreover, there

has been no previous work in the literature on frictional elasto-plastic TFD models.

In [2] and [1], we present an accurate and efficient elasto-plastic NFD model in a displacement-driven
version and a force-driven version, respectively. In the present paper, we focus on the frictional elasto-

plastic TFD model that is consistent with the formalism set forth in our previous work on elasto-plastic

NFD models, and consistent with the Hertz, Cattaneo, Mindlin, and Deresiewicz theory for frictional

elastic contact.

The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact

area radius into an elastic part and a plastic part, (ii) the correction of the particles� radii at the contact

point, and (iii) the correction of the particles� elastic moduli. The correction of the contact-area radius

represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature
represents a permanent indentation after impact; the correction of the elastic moduli represents a softening

of the material due to plastic flow. The proposed elasto-plastic frictional TFD model is accurate, and is

validated against non-linear FE analyses involving plastic flows under both loading and unloading

conditions.
2. Elastic-frictional contact

In this section, we review the contact mechanics theory of elastic-frictional contact between two spheres.

This theory is at the foundation of our proposed elasto-plastic frictional TFD model.

2.1. Cattaneo, Mindlin, Deresiewicz theory

Hertz theory gives the NFD relationship for contacting spheres subjected to normal force [19]. Based on

Hertz theory, the problem of contacting spheres subjected to a constant normal force and a varying tan-

gential force was first considered in [28] and then independently in [29]. Later, in [20], the solution for the
simple-loading 3 cases of two spheres in elastic-frictional contact subjected to a varying oblique force (as

shown in Fig. 1) was presented. For the Cattaneo, Mindlin, Deresiewicz (CMD) theory of contact me-

chanics, the following assumptions are applied (see Fig. 2):

1. The normal pressure p acting between the spheres is given by Hertz theory. That is, the application of a

tangential force changes neither the size of the contact area nor the normal pressure acting on it. In ad-

dition, the normal displacement of the spheres is also given by Hertz theory, and is independent of the

tangential force.

2. Slip starts at the edge of circular contact area, and progresses with increasing Q toward the center of the
contact area. The resulting slip zone is a circular annulus that is concentric with the contact area.

3. In the slip region, the tangential traction is given by the Coulomb friction limit q ¼ lp, where l is the

friction coefficient.

4. The direction of slip is parallel to the direction of the applied tangential load Q. While components of

slip do exist in directions that are not parallel to Q, the effect of these components is neglected.

Assumption 1 implies that the assumptions made in Hertz theory still hold, e.g., the contact area and the

normal displacement are small, compared to the size of the contacting spheres. It was also indicated in [29]

that if there were no slip on the contact surface, the tangential traction q at the outer edge of the circular
contact area would go to infinity. Since real materials cannot sustain infinite traction, some slip must occur.
3 We refer the reader to [20] and to [6] for the definition of simple loadings.
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Fig. 2. Elastic-frictional contact: contact area (view from þz).

P

P

Q

Q

(i)M

(j )M

(i) α

(j )α

(i)δ

(j )δ

i

j

x

z

Fig. 1. Two spheres in contact and subjected to normal and tangential forces.
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In what follows, we will discuss some cases of elastic-frictional contact between two spheres subjected to

both normal and tangential forces, based on the CMD theory. For simplicity, we will restrict our discussion

to the case of identical spheres (see Fig. 1), where ðiÞR ¼ ðjÞR ¼ R. Also, we assume that the spheres are
homogeneous and made of the same material.

2.1.1. Case P constant, Q oscillating

At first, we load the two contacting spheres with only the normal force P . From Hertz theory, the

contact-area radius a and the normal displacement a in each of the two spheres are given by

a ¼ 3PRð1� m2Þ
4E

� �1=3

; a ¼ a2

R
¼ 9P 2ð1� m2Þ2

16RE2

 !1=3

; ð2:1Þ

where E and m are the Young�s modulus and Poisson�s ratio of the sphere material, respectively. The normal

pressure distribution p on the contact surface and the maximal normal pressure pm are given by

pðrÞ ¼ pm 1
h

� r
a

� �i1=2
; pm ¼ 3P

2pa2
¼ 6PE2

p3R2ð1� m2Þ2

 !1=3

; ð2:2Þ

where r is the distance from the center of the contact area.

While holding the normal force P constant, we add a tangential force Q to the spheres, see Fig. 1. In

accordance with Assumption 2, the stick region of the contact area is a circle of radius c (see Fig. 2).

According to the theory of Cattaneo and Mindlin (CM), the radius c of the stick region can be expressed as

c ¼ a 1

�
� Q
lP

�1=3

; ð2:3Þ

where l is the coefficient of friction. Outside the stick region, the value of tangential traction is equal to the

friction limit lp; thus micro slip occurs in this slip region.
Cattaneo and Mindlin found that the tangential traction q on the contact surface can be expressed as

q ¼

3lP
2pa3

ða2 � r2Þ1=2; c6 r6 a;

3lP
2pa3

½ða2 � r2Þ1=2 � ðc2 � r2Þ1=2�; r6 c:

8><
>: ð2:4Þ

Combining (2.4) with (2.1)1 and the relation G ¼ 1
2
E=ð1þ mÞ, the tangential traction can be expressed using

the two-argument CM function rCM defined in [30] as

q ¼ rCMða; cÞ :¼ Cða2 � r2Þ1=2; c6 r6 a;
C½ða2 � r2Þ1=2 � ðc2 � r2Þ1=2�; r6 c;

�
ð2:5Þ

where

C :¼ 4lG
pRð1� mÞ : ð2:6Þ

The two-argument CM function rCMð�; �Þ has the following property

rCMða; bÞ þ rCMðb; cÞ ¼ rCMða; cÞ: ð2:7Þ
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Property (2.7) can be used to simplify the application of the superposition method employed in the future

analysis of CMD theories.

The tangential displacement of the center of the sphere relative to the contact area is then given in terms
of Q by

d ¼ 3ð2� mÞlP
16Ga

1

"
� 1

�
� Q
lP

�2=3
#
; ð2:8Þ

where G is the shear modulus of the sphere material. The tangential stiffness KT can thus be obtained by

taking the inverse of the differentiation of (2.8) with respect to Q to yield

KT ¼ od
oQ

� ��1

¼ 8Ga
2� m

1

�
� Q
lP

�1=3

: ð2:9Þ

Evaluating (2.9) at Q ¼ 0, we find the initial-loading tangential stiffness

KT;0 ¼ ðKTÞQ¼0 ¼
8Ga
2� m

; ð2:10Þ

which will prove to be an important expression in the subsequent exposition of the theory. At Q ¼ lP in

(2.9) the tangential stiffness KT goes to zero, as does the stick-area radius c in (2.3), and thus free sliding

occurs.

Now consider the case where tangential force Q decreases to Q ¼ Q� þ DQ after having monotonically
increased to Q� under the constant normal loading P . Assume that Q�

6 lP , and that at Q ¼ Q� the stick

radius of the contact area is c� (see Fig. 2). When the increment DQð< 0Þ of tangential force is applied, the
tangential traction on the contact surface is equivalent to the tangential traction q� superposed with the

corresponding tangential traction increment Dq as shown in Fig. 3. To avoid infinite traction at the outer

edge of the contact area, the application of DQ must result in micro slip at the edge of the contact area,

opposite in direction to that of q�. In accordance with the CM theory, the radius c of the reverse slip region

is given by

c ¼ 1

�
� Q� � Q

2lP

�1=3

: ð2:11Þ

At this point the tangential traction caused by the maximum tangential force Q� is q� ¼ rCMða; c�Þ, and the

reverse traction caused by DQ is Dq ¼ �2rCMða; cÞ. Therefore, we obtain the summation

q ¼ q� þ Dq ¼ rCMða; c�Þ � 2rCMða; cÞ: ð2:12Þ

The tangential displacement at Q can be expressed by

d ¼ 3ð2� mÞlP
16Ga

2 1

�"
� Q� � Q

2lP

�2=3

� 1

�
� Q
lP

�1=3

� 1

#
: ð2:13Þ

Differentiating (2.13) with respect to Q and taking the inverse of the derivative, we obtain the tangential

stiffness expression for unloading

KT ¼ 8Ga
2� m

1

�
� Q� � Q

2lP

�1=3

: ð2:14Þ



Fig. 3. Elastic-frictional contact: tangential tractions at Section A–A for P constant, Q decreasing.
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Evaluating (2.14) at Q ¼ Q�, we obtain

KT;� ¼ ðKTÞQ¼Q� ¼
8Ga
2� m

: ð2:15Þ

Therefore, the initial unloading tangential stiffness KT;� is identical to the initial loading tangential stiffness

in (2.10). From now on, we use KT;0 for both loading and unloading tangential stiffness.

Fig. 4 shows the TFD curve for the cases with P constant and Q varying. The FD state shown in

Fig. 4 corresponds to the case with P constant and Q decreasing as discussed above. As the tangential force

Q decreases to zero, the tangential displacement d decreases to a non-zero value dr, which is the residual
tangential displacement. As a result, energy is dissipated. The area inside the hysteresis loop is equal to the

energy dissipation of in one cycle of the tangential force.

In real impact problems, the normal force does not remain constant. An incremental method was applied

to determine the stiffness (inverse of the compliance) expressions for identical spheres that were subjected to

varying normal and tangential forces [20]. A simple loading history is a time history of P and Q such that,

when each load is applied incrementally, the tangential traction after each increment is exactly the same as

the tangential traction after an initial (or virgin) tangential-force loading or after a series of loading and

unloading, all under a constant normal force.



Fig. 4. Elastic-frictional contact: TFD curve for P constant, Q varying.
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2.1.2. Case P increasing, Q increasing

Assume that the given initial state with fP0;Q0; d0g shown in Fig. 5 is a result of a simple loading
history; the corresponding tangential traction q0 and initial friction limit lp0 are both shown in Fig. 6.

When both the increment in normal force and the increment in tangential force are small, the final state

can be reached by first incrementing the normal force to P1 ¼ P0 þ DP , and then by incrementing the

tangential force to Q2 ¼ Q0 þ DQ. When the normal force is increased to P1, the radius a1 of contact area is

enlarged, the normal traction p1 is increased everywhere on the contact area, and the friction limit is in-

creased to lp1 accordingly, as shown in Fig. 6. When the friction limit of the tangential traction is

lp1 > lp0 P q0 everywhere on the contact area, there is no longer any micro slip on the contact surface.

When the tangential force is increased to Q2 ¼ Q0 þ DQ, two situations are observed: DQP lDP , or
DQ < lDP .

Subcase DQP lDP : the increment DQ of tangential force can be decomposed into two parts:

DQ ¼ DQ01 þ DQ12, with DQ01 ¼ lDP corresponding to state shown in Figs. 5 and 6. Since there is no

tangential traction on the newly created contact area r 2 ½a0; a1�, and since there is no micro slip on the

entire contact area before the application of DQ01, the distribution of DQ01 creates an additional tangential

traction Dq01, which is identical to the case where DQ01 is an initial loading of the tangential force under the

constant normal force P1. The stick radius for the incremental tangential traction distribution Dq01 due to

the incremental tangential force DQ01 is actually equal to the radius a0 of the whole contact area in state ,
due to (2.3) and (2.1)1. (See the second subfigure in Fig. 6.) After a superposition of Dq01 onto q0, the
resulting traction q1 ¼ q0 þ Dq01 is exactly the same as the tangential traction caused by holding P1 constant
and by increasing Q from zero to Q1 ¼ Q0 þ lDP . We say the loading history is simple because we recover

the state of tangential distribution obtained as if the normal load has always been constant at P1. At this

state , the tangential traction at any point in c0 6 r6 a1 is equal to the friction limit at that point. When



Fig. 5. Elastic-frictional contact: TFD curves for P increasing, Q increasing.
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superposing the incremental tangential traction distribution Dq01 with stick area radius a0 on the tangential

traction distribution q0 with stick area radius c0, the stick-area radius in state remains c0. The tangential
displacement d1 at state can be expressed as

d1 ¼ d0 þ Dd01 ¼ d0 þ
lDP

ðKT;0ÞP¼P0

: ð2:16Þ

The next step is to apply the increment DQ12. As shown in Figs. 5 and 6, from state to state , the

TFD relation is the same as that of a virgin tangential loading under the normal force P1. The tangential
displacement d2 at state can be expressed by

d2 ¼ d1 þ Dd12 ¼ d1 þ
DQ12

KT;12

; ð2:17Þ

where the tangential stiffness KT;12 can be determined according to (2.9) by

KT;12 ¼
8Ga
2� m

1

�
� Q0 þ lDP

lP1

�1=3

: ð2:18Þ

The change of the tangential traction can be expressed as a series of superpositions of CM functions: At

state , the tangential traction is q0 ¼ rCMða0; c0Þ. The tangential traction caused by the tangential force

DQ01 is Dq01 ¼ rCMða1; a0Þ. Therefore, we have the following tangential traction at state by superposition

q1 ¼ rCMða0; c0Þ þ rCMða1; a0Þ ¼ rCMða1; c0Þ; ð2:19Þ



Fig. 6. Elastic-frictional contact: tangential tractions for P increasing, Q increasing (DQPlDP ).
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where the second equality was obtained by using (2.7) in (2.19). Consequently, the tangential traction at

state can be expressed by a two-argument CM function as

q2 ¼ rCMða1; c2Þ: ð2:20Þ

Subcase DQ < lDP : This subcase is similar to the first step in going from state to state , as shown in

Figs. 5 and 6. Since DQ < lDP , the stick-area radius of the incremental tangential traction Dq cannot

develop enough to reach the former contact-area radius a0 at state . Therefore, the tangential traction on

the contact surface cannot return to that of a virgin tangential loading under a constant normal force, and

thus the loading is no longer simple. The tangential displacement at this point can be expressed as

d2 ¼ d0 þ
DQ

ðKT;0ÞP¼P1

: ð2:21Þ

If shown in Fig. 5, the final state would be a point between and .
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More details about the change of the tangential and normal tractions, tangential stiffness, and the TFD

relationship for other cases, such as (i) P decreasing, Q increasing, (ii) P increasing, Q decreasing, (iii) and P
decreasing, Q decreasing, of simple loading histories can be found in [20].

A TFD model for elastic frictional contact based on the four (4) basic loading cases of the MD [20]

theory has been implemented in our DEM granular flow simulation code [6]. The TFD model proposed in

[6] has been validated with a large number of impact conditions and flow regimes. The present elasto-plastic

frictional TFD model is a generalization of the elastic frictional TFD model in [6] to account for the effects

of plastic deformation. The present TFD model is intended to be used for general loading histories. Again,

only the four basic loading cases as discussed in [6] are considered in the development of the present TFD

model.

2.2. FEA validation of CMD theory

Since tangential force and tangential displacement are involved, three dimensional FEA is necessary. We

discretized a region of two identical spheres near the contact area, as shown in Fig. 7, where more than 3000

3-D FEs were used. The radius of the identical spheres is R ¼ 0:1 m. The material properties chosen for the

elastic contact were: Young�s modulus E ¼ 7:0� 1010 N/m2, Poisson�s ratio m ¼ 0:3, and coefficient of

friction l ¼ 0:2. In the following, we discuss some of the results obtained from our FEA using ABAQUS.

We refer the readers to reference [22] for more details on our FEA model and the FEA results.
In the first test, we began by applying the normal contact force to P ¼ 2600 N, and held this force

constant. The tangential force was increased from zero to Q ¼ 500 N, then decreased to zero under the

constant normal force.

Fig. 8 shows the NFD curve when the normal force was applied. The FEA results agree well with the

NFD curve obtained from Hertz theory by using (2.1)2. At P ¼ 2600 N, the maximum normal displacement

from the FEA results differs from that of the Hertz theory by about 6.0%, which is larger than the difference

(less than 1.0%) between Hertz theory and FEA results obtained using axisymmetric FEA, as presented in

[1,22]. This larger error could be attributed to the following reasons: (i) the axisymmetric FEA model has a
much finer mesh than the 3-D model shown in Fig. 7, (ii) the discretized region of a sphere in this 3-D FEA
X
Y

Z

X
Y

Z

Fig. 7. 3-D FE mesh for two identical spheres in elasto-plastic frictional contact.
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model is smaller than that in the axisymmetric FEA, and (iii) the axisymmetric FEA by its nature is less

sensitive to discretization than full 3-D FEA.

Fig. 9 shows the TFD curve from the FEA results, which agree closely with the TFD curve obtained

from the Cattaneo–Mindlin theory using (2.8) and (2.13). The maximum difference between the FEA results

and the Cattaneo–Mindlin theory shown in Fig. 9 is less than 2.0%.

Figs. 10 and 11 show the normal traction and the tangential traction on the contact surface at
Qmax ¼ 500 N under constant P ¼ 2600 N, respectively. In Fig. 10, the FEA normal traction (pressure) p on
the contact surface agrees well with the normal pressure from the Hertz theory, except for the value at the

center of the contact area. Similarly, Fig. 11 shows the FEA tangential traction q agrees with the tangential

traction from the Cattaneo–Mindlin theory, except for the value at the center of the contact area.

The computed values of the normal and tangential tractions at the center of the contact area are roughly

twice the corresponding exact theoretical values. This numerical problem is attributed to the postprocessing

algorithm employed in ABAQUS; such algorithm can be improved to avoid this numerical problem. The

details on the use of ABAQUS to obtain these results are given in [22, p. 6483]. We note that a similar
peculiar numerical behavior exists in the axisymmetric FEA as reported in [22, Fig. 7, p. 6463]; in this case,

the computed normal traction at the center of the contact area as obtained from ABAQUS is about half of

(instead of twice) the expected value.

A reason for the non-symmetric distribution of the shear stress sxz inside the layer of elements that are

closest to the contact surface, as shown in Fig. 11 is likely due to the superposition of (i) the axisymmet-

rically distributed shear stress generated by the normal force pushing the two spheres toward each other

and (ii) the non-symmetric distribution of shear stress generated by the tangential force.

Now consider a case where both P and Q are varying. Using the FEA model shown in Fig. 7, we start
with the application of a normal force of P ¼ 400 N. Next, we increase the tangential force with a constant

rate from zero to Qmax ¼ 360 N, and at the same time increase the normal force also with a constant rate

from 400 N to Pmax ¼ 2000 N. When tangential force is unloaded from Qmax ¼ 360 N to zero, the normal
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force is unloaded from Pmax ¼ 2000 N to P ¼ 400 N accordingly. Fig. 12 shows that the TFD curve from

FEA results agrees closely with the TFD curve from the MD [20] theory. What we have above is a simple

loading history since jDQjP ljDP j throughout the tangential loading and unloading.
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Fig. 12. Elastic-frictional contact: Q versus d, for Q and P both varying. Qmax ¼ 360 N and Pmax ¼ 2000 N.
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Applying various loading histories to the FEAmodel shown in Fig. 7, we obtained FEA results that agree

closely with the CMD theory [22]. From the comparisons between the FEA results and the CMD theory, we

can conclude that (i) the CMD theory is accurate for elastic-frictional contact subjected to simple loading
history, and (ii) the FEA model is reliable for the analysis of elastic-frictional contact problems. We will

therefore use the discretization shown in Fig. 7 for further analysis of elasto-plastic contact problems.

We also carried out FEA for elastic-frictional contact subjected to non-simple loading histories, and found

that the MD [20] theory is invalid for non-simple loading histories. The related results are presented in [6].

Although the FEA results for elastic-frictional contact presented in this section show that the CMD

theory provides a correct TFD relationship, the application of CMD theory is limited to the cases when the

contact area is much smaller than the size of the spheres in contact, i.e., a � R. Some of our other FEA

results reveal that such condition is more rigorous for the CMD theory than for Hertz theory in the normal
direction. For example, when a � 0:01R, the FEA results agree with Hertz theory but differ from the MD

[20] theory by about 17% in the maximum tangential displacement.
3. Elasto-plastic TFD model: construction

We present the construction of an elasto-plastic TFD model in this section. There has never been any

work in the literature dealing with the effects of plastic deformation on the TFD relations. Our work is a
first attempt to tackle the problem. 4 The present elasto-plastic TFD model is based on the same formalism

employed in the construction of the elasto-plastic NFD model in [1]; these two models thus provide a

complete set of consistent elasto-plastic FD models for particles in collision.

3.1. FEA of elasto-plastic contact

We carried out the 3-D FEA of static contact problems of two identical elastic-perfectly-plastic spheres

in frictional contact using the FEA mesh shown in Fig. 7. The geometric and elastic properties of the two
spheres are the same as those used for the FEA of elastic contact, i.e., R ¼ 0:1 m, Young�s modulus

E ¼ 7:0� 1010 N/m2, Poisson�s ratio m ¼ 0:3, and the coefficient of friction l ¼ 0:2. The uniaxial yield stress

of the sphere material is set to rY ¼ 1:0� 108 N/m2. From the FEA results (Figs. 9, 13, 14, and others

presented in [22]), we observed the following FD behavior of the tangential contact stiffness:

• When the material is in the elastic range, i.e., without yield and plastic deformation, the FD behavior in

the normal direction follows the Hertz theory; the FD behavior in the tangential direction follows the

MD [20] theory.

• For the elastic-perfectly-plastic material employed in [22], the plastic deformation is mainly caused by nor-
mal force P , i.e., the shape and size of the plastic zone caused by both P andQ is very close to the one formed

under only the same level of normal force P ; but the plastic deformation does affect the TFD behavior.

• If the normal force is increased to a level that is much larger than the yield normal force PY (i.e.,

P � PY), and is then held constant before the application of the tangential force, even though there is

a large amount of plastic deformation involved, the FD behavior in the tangential direction is a little

stiffer than that from the MD [20] theory for the elastic case. Fig. 13 shows such a situation, where

an aluminum sphere of radius R ¼ 0:1 m, in contact with a frictional rigid planar surface, is subjected

to a constant normal force P ¼ 2600 N � PY (¼ 36.45 N) and a varying tangential force Q; it can be
observed that the FEA TFD relation is stiffer than the TFD relation in the MD [20] theory.
4 The technical work in this paper was accomplished in Aug 1997, as reported in Lesburg�s Master�s thesis [35], the contents of which
have been published in [1,22], and in the present paper. See also Zhang�s PhD thesis [36], which was completed in Dec 1998. We have

continued to work to publish our several research results obtained prior to Dec 1998 while carrying out our other research works.
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• When both the normal force P and tangential force Q are applied at the same time, plastic deformation

results in FD curves that are softer than those predicted by elastic contact mechanics theories. That is,

the NFD curves are softer than those predicted by Hertz theory and follow softening trends that are
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described in [2]. The TFD curves form hysteresis loops that are larger and softer than those observed for

elastic cases. Fig. 14 shows a typical Q-versus-d curve from elasto-plastic FEA results compared with the

corresponding Q-versus-d curve from the MD [20] theory for elastic contact.

We see that the plastic deformation increases the tangential stiffness in some cases, while decreases the
tangential stiffness in some other cases. Such behavior is caused by two effects of plastic deformation. The

first is that plastic deformation increases the contact area, thus a larger frictional surface is involved to resist

the tangential force, thus causing the tangential stiffness to increase. On the other hand, plastic flow

weakens the stiffness of the material involved, and thus decreases the tangential stiffness. An analogy that

can be used to explain the behavior caused by plastic deformation, as just described above, is a column with

changeable width shown in Fig. 15. The increase of the contact area is similar to the increase of the column

width, and the weakening of the material caused by plastic deformation is similar to the necking that

decreases the stiffness of the column. In certain cases, the increasing of the contact area plays a more
important role; in these cases, the overall tangential contact stiffness increases. In other cases, when the

weakening of the material by the plastic deformation is more significant, the overall tangential contact

stiffness decreases.

The TFD curves shown in Fig. 14 correspond to the loading history A shown in Fig. 17 and Table 1.

There are some �bumps� in the TFD curve of FEA results shown in Fig. 14. These �bumps� could be mainly

the result of the plastic zone reaching the contact surface of the sphere, thus creating an additional sliding

mechanism. Since the plastic deformation is mainly caused by the normal loading, when the normal force is

a constant, as in the case shown in Fig. 13, there is no �bump� on the TFD curve. For the case shown in
Fig. 14, both the normal force and the tangential force are increased simultaneously. In this case, when the

normal force reaches a certain level, the plastic zone is expanded to reach the contact surface and the center

of the contact area is surrounded by a plastic zone, thus making it very easy for large displacements to

occur. Further investigations into the numerical methods employed (e.g., properties of the FE used,
QQ

2ae 2aep

elasti c elasto-plastic

frictional rollers

Fig. 15. Analogy to the effect of plastic deformation on the contact tangential stiffness using a column with changeable width.



Table 1

Numerical examples: force parameters for loading histories shown in Fig. 17

Loading history Pmax (N) Qmax (N) PQbg (N) lPmax (N)

A 1500 270 300 300

B 500 90 100 100

C 250 45 50 50
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integration procedures, treatment of contact constraints, etc.) and into the mechanics of deformation under

combined normal and tangential loading increase are required to shed some light into the nature of these

bumps. In other words, were these bumps due to the implementation of numerical methods employed in

ABAQUS, or were they actual behavior of the sphere under combined increase of normal and tangential

loads well beyond the incipient yield limit?

3.2. Additive decomposition of elasto-plastic contact-area radius

In our previous papers, [1,2], the additive decomposition of elasto-plastic contact radius was introduced

as an important step to construct an accurate elasto-plastic NFD model. Such a decomposition is also used

in the construction of this proposed elasto-plastic TFD model to represent the effect of plastic deformation

on the contact-area radius. That is, the elasto-plastic contact-area radius aep can be decomposed to be the

sum of an elastic part ae and a plastic part ap as follows:

aep ¼ ae þ ap; ð3:1Þ

where the elastic contact-area radius ae is determined using Hertz theory by (2.1)1 with the corresponding
normal contact force. As observed from FEA results, the plastic part of the contact-area radius ap can be

approximated using a bilinear function as

ap ¼ CahP � PYiðmÞ for loading;
CahPmax � PYiðmÞ for unloading;

�
ð3:2Þ

where Ca is a constant that can be determined by the properties of the spheres in contact. For example, for

the contact problem considered, our elasto-plastic FEA results give a Ca value of 2:33� 10�7 m/N. We refer

the readers to [1,22] for more details on the approximation (3.2) and FEA results. In (3.2), the symbol h i
denotes the MacCauley bracket defined by

hxi ¼ 0 for x6 0;
x for x > 0:

�
ð3:3Þ

Replacing the contact-area radius a in (2.10) by the elasto-plastic contact-area radius aep defined in (3.1),

we obtain

Kep
T;0 ¼

8Gaep

2� m
: ð3:4Þ

Since aep P ae, the initial elasto-plastic tangential stiffness KT;0 given by (3.4) is larger than that for elastic

case given by (2.10). Fig. 13 shows the FEA results from a large plastic deformation resulting in an in-
creased tangential stiffness. The importance of the additive decomposition (3.1) of the contact-area radius

aep lies in the consistency between our successful elasto-plastic NFD model (proposed in [1,2]) and the

present elasto-plastic TFD model. Such consistency is often lacking in the literature of granular flow

simulations, where elasto-plastic deformation is accounted for only in the normal direction (in various
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ways), while only elastic (frictional) deformation is accounted for in the tangential direction. (See, for

example, [6,27,31].) In addition, the formalism of the additive decomposition of the contact-area radius is

consistent with that employed in the continuum theory of elasto-plasticity. On the other hand, the additive
decomposition (3.1) above is not sufficient to describe the decrease in the tangential stiffness when both the

normal force P and the tangential force Q vary.

3.3. Equivalent elasto-plastic modulus Eep

We introduce the equivalent elasto-plastic modulus Eep to account for the weakening of tangential

stiffness by plastic deformation. As described in [1], the irreversible plastic deformation flattens the contact

surface, and thus increases the local radius of curvature of the sphere at the contact point; such change in
the radius of curvature can be modeled as

Rp ¼ CRðPÞR; ð3:5Þ

where CRðP Þ is the coefficient for adjusting the radius of curvature to account for the plastic deformation.

Noticing that the plastic deformation tends to flatten the contact surface, and that the larger the normal

force P the larger the local radius of curvature at the contact point, we propose to approximate CRðP Þ as

CRðP Þ ¼
1:0 for P 6 PY;
1:0þ KchP � PYi for P > PY;

�
ð3:6Þ

where Kc is a constant determined by the properties of the sphere in contact. For the sphere employed in

our FEA, we obtain Kc ¼ 2:69� 10�4 N�1.

As documented in [1], we also observe that the relationship between the normal displacement and the

radius of contact area follows the parabola law:

a ¼ ðaepÞ2

Rp

: ð3:7Þ

Recall that in [1] we assume the normal traction having the shape of a half ellipsoid on the contact surface.

The elasto-plastic contact-area radius aep can thus be expressed using the Hertz theory (Eq. (2.1)1) applied

to an equivalent (or fictitious) sphere with radius of curvature Rp and with equivalent elastic modulus Eep as

follows:

aep ¼ 3PCRRpð1� m2Þ
4Eep

� �1=3

: ð3:8Þ

From (3.8), the equivalent elastic modulus Eep for the case in which the normal force P increases can be

written as

Eep ¼ 3PCRRð1� m2Þ
4ðaepÞ3

: ð3:9Þ

For contact with plastic deformation, the equivalent elastic modulus Eep is less than the Young�s
modulus, thus the equivalent shear modulus Gep is decreased according to

Gep ¼ Eep

2ð1þ mÞ : ð3:10Þ
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For the case of normal force increasing, the equivalent shear modulus Gep obtained with (3.9) and (3.10) is

applied to (3.4) to calculate the initial elasto-plastic tangential stiffness

Kep
T;0 ¼

8Gepaep

2� m
: ð3:11Þ

The case in which normal force decreases is similar. When the normal force is decreasing, the initial

tangential stiffness KT;0 is also evaluated by (3.11). Considering that the unloading of the normal force is

elastic with fixed plastic deformation, the expression for the equivalent elastic modulus takes the following

form

Eep ¼
3P ðCRÞP¼Pmax

Rð1� m2Þ
4ðaeÞ3

; ð3:12Þ

where ðCRÞP¼Pmax
designates the value of the coefficient CR at the maximum value of the normal force, and ae

the elastic contact radius determined by (2.1)1, as per Hertz theory.

When the normal force is constant, the amount of plastic deformation is primarily determined by the

normal force, based on our observations of the FEA results. It follows that the case of constant normal

force is similar to the case of decreasing normal force.
4. Algorithm of the elasto-plastic TFD model

In this section, we present the computational algorithm and the pseudocode for the proposed elasto-

plastic TFD model.

4.1. Elasto-plastic TFD model

As shown in Fig. 16, the normal pressure on the contact surface is almost constant inside the contact

area. The FE maximum normal pressure ðpFEÞmax on the contact surface is always slightly more than twice

the yield stress of the material rY, i.e., pmax � 2:3rY, regardless of the level of normal contact force when
P � PY.

In the present elasto-plastic TFD model, we approximate the distribution of the normal pressure on the

elasto-plastic contact surface by an elliptic curve represented by the dashed line in Fig. 16, and expressed by

pepðrÞ ¼ ðpmÞep 1
h

� r
aep

� �i1=2
; ð4:1Þ

where ðpmÞep is the maximum normal pressure for the proposed elasto-plastic TFD model; note that this
approximation does not affect the elasto-plastic NFD relationship [1]. Recall that the integration of normal

pressure on the contact surface is equal to the normal force P , i.e.,

P ¼ 2

3
ðpmÞeppðaepÞ

2 ) ðpmÞep ¼
3P

2pðaepÞ2
: ð4:2Þ

For the case shown in Fig. 16, when P ¼ 1500 N, we have ðpmÞep � 3:2� 108 N/m2. Comparing to the

maximum normal pressure obtained using Hertz theory with the same level of normal force P , the value of
ðpmÞep is much smaller. This observation can be explained by the smaller equivalent elastic modulus Eep.

As we already pointed out, the assumption of elliptic normal pressure distribution given by (4.1) does

not affect the elasto-plastic NFD relationship, and plays an important role in the present elasto-plastic TFD
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model. With the equivalent elliptic distribution of the normal pressure as expressed in (4.1), together with

the reduced equivalent elastic modulus Eep, the elasto-plastic TFD relation can now be constructed in a

manner analogous to the elastic-frictional TFD relation proposed in [6].
When the normal force P is a constant, the relationship between Qn for the previous time-step and Qnþ1

for the current time-step is given by the following incremental formula

Qnþ1 ¼ Qn þ Kep
T;nDd; ð4:3Þ

where Dd is the increment of tangential displacement, Kep
T;n the tangential stiffness coefficient for the elasto-

plastic contact at the current increment step, which is computed as follows:

Kep
T ¼

Kep
T;0 1� Qn � Q�

2lP

� �1=3
for Q increasing ð%Þ and jQnj6 jQ�j;

Kep
T;0 1� Qn

lP

� �1=3
for Q increasing ð%Þ and jQnj > jQ�j;

Kep
T;0 1� Q� � Qn

2lP

� �1=3

for Q decreasing ð&Þ and jQnj6 jQ�j;

Kep
T;0 1þ Qn

lP

� �1=3

for Q decreasing ð&Þ and jQnj > jQ�j;

8>>>>>>>>>><
>>>>>>>>>>:

ð4:4Þ

where Kep
T;0 is the initial tangential stiffness determined by (3.4) using aep and Eep. Clearly, when P 6 PY, the

tangential stiffness Kep
T;0 has the same value as obtained using the MD [20] theory.

For the case where both P and Q are increasing simultaneously, we have two subcases. Let

DP ¼ Pnþ1 � Pn and DQ ¼ Qnþ1 � Qn. Subcase 1: When DQP lDP , the tangential displacement is updated

by (similar to (2.17))

dnþ1 ¼ dn þ
lDP

ðKep Þ þ DQ� lDP
Kep ; ð4:5Þ
T;0 P¼Pn T;nþ1
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where the tangential stiffness is determined by (similar to (2.18))

Kep
T;nþ1 ¼

8Gepaep

2� m
1

�
� Qn þ lDP

lPnþ1

�1=3

: ð4:6Þ

Subcase 2: When DQ < lDP , the tangential displacement is updated by (similar to (2.21))

dnþ1 ¼ dn þ
DQ

ðKep
T;0ÞP¼Pn

: ð4:7Þ

For the other loading cases (P decreasing, Q increasing; P increasing, Q decreasing; P decreasing, Q
decreasing), we refer the readers to [6] for more details.
4.2. Pseudocode: force-driven version

We summarize the force-driven version of the proposed elasto-plastic TFD model in Algorithm 4.1

below.

Algorithm 4.1. Elasto-plastic TFD model: force-driven version.

Input: R;E; m; rY.

Calculated PY via the elasto-plastic NFD model.

Data: Normal forces: Pn; Pnþ1; and Pmax etc.

Calculated aenþ1; a
p
nþ1; and aepnþ1.

Initialization: Set Q�
0 ¼ 0; Qinc ¼ true.

Data: Force Qn; and Qnþ1, displacement dn; and Q�
n.

Goal: Compute next tangential displacement dnþ1.

Calculate DPnþ1 ¼ Pnþ1 � Pn and DQnþ1 ¼ Qnþ1 � Qn.

Set Q�
nþ1 ¼ Q�

n.

if DPnþ1 ¼ 0 ðP constantÞ
if Pnþ1 6 PY (elastic)

Calculate KT;0 via (2.10).
elseif Pnþ1 > PY (plastic)

Calculate ðE�Þep via (3.12).

Calculate Kep
T;0 via (3.11).

endif

if DQnþ1 P 0 (Q increasing)

Calculate Kep
T;n via (4.4);

Calculate dnþ1 via (4.3).

Set Qinc ¼ true.
elseif DQnþ1 < 0 (Q decreasing)

if Qinc ¼ true

Set Q�
nþ1 ¼ Qn.

endif

Calculate Kep
T;n via (4.4);

Calculate dnþ1 via (4.3).

Set Qinc ¼ false.

endif
elseif DPnþ1 > 0 (P loading)
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if Pnþ1 6 PY (elastic)

Calculate KT;0 via (2.10).

elseif Pnþ1 > PY (plastic)

Calculate ðE�Þep via (3.9);
Calculate Kep

T;0 via (3.11).

endif

if DQnþ1 P 0 (Q increasing)

if DQnþ1 P lDP
Calculate Kep

T;nþ1 via (4.6);

Calculate dnþ1 via (4.5).

elseif DQnþ1 < lDP
Calculate dnþ1 via (4.7).
WARNING: NOT a simple loading step.

endif

Set Qinc ¼ true.

elseif DQnþ1 < 0 (Q decreasing)

Set Qinc ¼ false.

endif

elseif DPnþ1 < 0 (P unloading)

if Pnþ1 6 PY (elastic)
Calculate KT;0 via (2.10).

elseif Pnþ1 > PY (plastic)

Calculate ðE�Þep via (3.12).

Calculate Kep
T;0 via (3.11).

endif

if Ddnþ1 P 0 (Q increasing)

Set Qinc ¼ true.

elseif Ddnþ1 < 0 (Q decreasing)
Set Qinc ¼ false.

endif

endif
5. Numerical examples

We implemented the present elasto-plastic TFD model in a MATLAB code. The TFD curves produced

by using the present TFD model are compared against the corresponding curves from 3-D FEA results for

the static contact of two identical aluminum spheres. Elasto-plastic frictional FEA were performed for the

loading histories shown in Fig. 17 and Table 1. The mechanical properties and the FE model were the same

as described in Sections 2.2 and 3.1. The TFD curves (Q versus d) from (i) The MD [20] theory, (ii) FEA,

and (iii) the present elasto-plastic TFD model shown in Figs. 18, 20, and 21. All figures are produced from
force-driven procedures, i.e., the tangential and normal forces are provided as input, and the tangential and

normal displacements are obtained as output. The coefficients of restitution in the tangential direction

shown in Figs. 18, 20, and 21 (denoted by bFE for FEA results, by bPM for the present TFD model, and by

bMD for the MD [20] theory), are obtained as the square of energy dissipation in the corresponding loading

path, computed by



0 1 2 3 4

Fo
rc

es

t

µ = 0 .2

Pma x

PQbg

µP max

Qmax

(∆Q = µ∆P) max

∆Q = µ∆P

P

Q

µP

Fig. 17. Numerical examples: loading histories for comparison of TFD curves.

FEA results

Proposed TFD model

Mindlin

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
–6

0

50

100

150

200

250

300

d (m )

Q
(N

)

Pmax = 1500 N P Y = 3 6.45 N
Qmax = 270 N
b FE = 0 .5545
b PM = 0 .6485
b MD = 0 .9717

FE A
Presen t m odel
MD[1953]

Fig. 18. Elasto-plastic frictional contact: loading history A. TFD curves. Comparison of present force-driven TFD model to [20] and

to force-driven FEA.

L. Vu-Quoc et al. / Journal of Computational Physics 196 (2004) 298–326 321



FEA results

Proposed TFD model

Mindlin

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
–6

0

50

100

150

200

250

300

(m)

Q
(N

)

Pmax = 1500 N
(Qfe) max = 270 N
(Qpm) max = 295.5 N

F E = 0 .5545
P M = 0 .6192

βMD = 0 .9716

FEA
Present model
MD[1953]

β
β

δ

Fig. 19. Elasto-plastic frictional contact: Loading history A. TFD curves. Comparison of the displacement-driven version of the

proposed TFD model to other models.

FEA results

Proposed TFD model

Mindlin

0 0.5 1 1.5

x 10
–6

0

10

20

30

40

50

60

70

80

90

d (m)

Q
 (

Ν
)

Pmax = 500 N P Y = 3 6.45 N
Qmax = 9 0 N
bFE = 0 .7352

PM
= 0 .8168

MD
= 0 .9717

FE A
Present model
MD[1953]

b
b

Fig. 20. Elasto-plastic frictional contact: Loading history B. TFD curves. Comparison of the present force-driven TFD model to the

MD [20] model and to FEA.

322 L. Vu-Quoc et al. / Journal of Computational Physics 196 (2004) 298–326



FEA results

Proposed TFD model

Mindlin

–1 0 1 2 3 4 5 6 7 8 9

x 10
–7

0

5

10

15

20

25

30

35

40

45

d (m)

Q
 (

N
)

Pmax = 250 N P Y = 3 6.45 N
Qmax = 4 5.0 N
bFE = 0 .8309

PM
= 0 .8794

MD
= 0 .9744

FEA

Present model
MD[1953]

b
b

Fig. 21. Elasto-plastic frictional contact: loading history C. TFD curves. Comparison of the present force-driven TFD model to the

MD [20] model and to FEA.

L. Vu-Quoc et al. / Journal of Computational Physics 196 (2004) 298–326 323
b :¼ Area under tangential unloading curve

Area under tangential loading curve

� �1=2

¼

Xloading
i s:t: fdi�di�1>0g

1

2
ðdi � di�1ÞðQi þ Qiþ1Þ

Xunloading

j s:t: fdj�dj�1<0g
� 1

2
ðdj � dj�1ÞðQj þ Qjþ1Þ

0
BBBBB@

1
CCCCCA

1=2

: ð5:1Þ

Fig. 18 shows the Q versus d curves under varying normal force P with Pmax ¼ 1500 N (loading history A

in Fig. 17 and Table 1). It can be seen that the curve produced by the present elasto-plastic TFD model can

more accurately account for the effect of plastic deformation, compared to the TFD curve produced by the

MD [20] theory. Even though there are large errors in the tangential displacement for the same level of

tangential force, the slopes of the loading and unloading parts of the TFD curve produced by the present
TFD model agree closely with the main slopes of the TFD curve from the FEA results.

As mentioned earlier, the bumps are likely the results of some sliding mechanism. If this sliding

mechanism were eliminated in the loading curve in the FEA results, one can easily see that the FEA results

will be brought closer to results of the proposed elasto-plastic TFD model. Essentially, the horizontal

distance that separates the two unloading curves (FEA results and present TFD model) is roughly the

cumulative amount of sliding that occurs during the loading stage. The causes for the sliding mechanism

(and thus the ‘‘bumps’’ mentioned earlier in relation to Fig. 14 in Section 3) require further investigation.

The tangential coefficient of restitution from the present TFD model is bPM ¼ 0:6485, which differs from
the FEA result (bFE ¼ 0:5545) by 16.9%. Even though further work still needs to be done to more accu-

rately account for the effects of plastic deformation on the TFD relation, the present work is a first attempt
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at producing a good elasto-plastic TFD model that is consistent with our successful elasto-plastic NFD

model, considering that there has been no previous work on this topic in literature.

Another way to verify the workability of the present elasto-plastic TFD model even in the presence of
additional sliding mechanism is to turn to the displacement-driven version of the present TFD model, and

to use as input the tangential displacement obtained from elasto-plastic force-driven FEA. In this manner,

the additional sliding mechanism is included naturally in the tangential-displacement time history that

serves as input data.

The results shown in Fig. 19 agree well with FEA results. The reason was because the input tangential

displacement (obtained from FEA) contained the additional sliding mechanism (bumps), and the proposed

elasto-plastic TFD model reproduces well the tangential force. We note that in simulations using the DEM,

the displacement-driven versions of both NFD model and TFD model are used [2,32]. It follows that the
proposed elasto-plastic TFD model is quite accurate for DEM simulations.

Figs. 20 and 21 are two more comparisons between the present elasto-plastic TFD model and FEA

results. The TFD curves produced by the present TFD model are closer to the FEA results in terms of

tangential displacement d, since there are fewer �bumps� and the �bumps� are smaller on the FEA TFD

curves than that of the case shown in Fig. 18. The slopes of the TFD curves produced by the present TFD

model, again, agree closely with that of the TFD curves from the FEA results. Again, if the additional

sliding mechanism that gave rise to the bumps were eliminated, we have good agreement between the FEA

results and the present TFD model, as the distance separating the unloading curves is essentially the
amount of sliding that occurred.

The results reported in Figs. 20 and 21 also show good agreement in the energy dissipation ratios, as

computed using both FEA and the present TFD model. For the loading path B (see Fig. 17 and Table 1),

the tangential coefficient of restitution by the present TFD model (bPM ¼ 0:8168) differs from that obtained

with FEA results (bFE ¼ 0:7352) by 11.1% (see Fig. 20). For the loading path C, the results are

bPM ¼ 0:8794 and bFE ¼ 0:8309, and thus the difference is only 5.8% (see Fig. 21).
6. Closure

We have presented an elasto-plastic frictional TFD model that accounts for the effect of plastic defor-

mation. The construction of an elasto-plastic frictional TFD model is a more challenging undertaking than

the construction of an elasto-plastic NFD model. Our proposed elasto-plastic frictional TFD model is

based on the analysis of FEA results, and on a generalization of elastic-frictional contact mechanics the-

ories (Hertz theory and CMD theory) to the plastic regimes. The methodology of this proposed TFD model

is consistent with the successful elasto-plastic NFD model proposed in [1,2]. A comparison between the
results obtained using the present TFD model and the FEA results shows that the present TFD model can

quantitatively account for the effect of plastic deformation on the TFD relationship.

We note that the accuracy of a TFD model plays an important role in granular-flow simulations, as it

has been amply demonstrated in [6] that different TFD models yield starkly different results, such as the

important statistics on collision frequency and contact force amplitude. It is therefore important to use an

accurate TFD model.

Although there are some plastic deformation effects that are still to be accounted for, the results shown

have proved that the present elasto-plastic TFD model is superior to other existing models, and is the first
model to account for plastic deformation in the TFD relationship. 5 Future work will focus on investigating

the behavior of the ‘‘bumps’’ observed in FEA, and to improve the present TFD model if necessary. We
5 Again, we refer the readers to footnote 4 and to Refs. [35,36].
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note that the displacement-driven version of the present model produces accurate results. Such accuracy is

important for simulation by the DEM, which employs the displacement-driven versions of the FD models.

We refer the readers to [32] for the details of the displacement-driven version of this TFD model.
Finally, we also note that the present formalism will be helpful in the generalization of the proposed

elasto-plastic frictional NFD and TFD models to account for viscous effects, i.e., elasto-visco-plasticity, in

colliding particles (e.g., biological materials [33,34]). Another important generalization is the case of par-

ticles of different sizes and shapes.
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